Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells*
نویسندگان
چکیده
PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca(2+)- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations ("spiking") at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K(+) depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca(2+) concentration ([Ca(2+)]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca(2+)]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca(2+)]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function.
منابع مشابه
Ca2+-controlled competitive diacylglycerol binding of protein kinase C isoenzymes in living cells
The cellular decoding of receptor-induced signaling is based in part on the spatiotemporal activation pattern of PKC isoforms. Because classical and novel PKC isoforms contain diacylglycerol (DAG)-binding C1 domains, they may compete for DAG binding. We reasoned that a Ca2+-induced membrane association of classical PKCs may accelerate the DAG binding and thereby prevent translocation of novel P...
متن کاملProtein Kinase C (PKC)ζ Pseudosubstrate Inhibitor Peptide Promiscuously Binds PKC Family Isoforms and Disrupts Conventional PKC Targeting and Translocation.
PKMζ is generated via an alternative transcriptional start site in the atypical protein kinase C (PKC)ζ isoform, which removes N-terminal regulatory elements, including the inhibitory pseudosubstrate domain, consequently rendering the kinase constitutively active. Persistent PKMζ activity has been proposed as a molecular mechanism for the long-term maintenance of synaptic plasticity underlying ...
متن کاملLipid Signalling Dynamics in Insulin-secreting β-cells
Wuttke, A. 2013. Lipid Signalling Dynamics in Insulin-secreting β-cells. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 892. 71 pp. Uppsala. ISBN 978-91-554-8644-0. Certain membrane lipids are involved in intracellular signalling processes, among them phosphoinositides and diacylglycerol (DAG). They mediate a variety of func...
متن کاملA Glycine-Insulin Autocrine Feedback Loop Enhances Insulin Secretion From Human β-Cells and Is Impaired in Type 2 Diabetes.
The secretion of insulin from pancreatic islet β-cells is critical for glucose homeostasis. Disrupted insulin secretion underlies almost all forms of diabetes, including the most common form, type 2 diabetes (T2D). The control of insulin secretion is complex and affected by circulating nutrients, neuronal inputs, and local signaling. In the current study, we examined the contribution of glycine...
متن کاملCa -dependent Protein Kinase C Isoforms Induce Cholestasis in Rat Liver*□S
Bile secretion is regulated by different signaling transduction pathways including protein kinase C (PKC). However, the role of different PKC isoforms for bile formation is still controversial. This study investigates the effects of PKC isoform selective activators and inhibitors on PKC translocation, bile secretion, bile acid uptake, and subcellular transporter localization in rat liver, isola...
متن کامل